Power Parks System Simulation

A. E. Lutz and J. O. Keller Combustion Research Facility Sandia National Laboratories Livermore CA 94551

Hydrogen Program Annual Review May 19, 2003

Objectives and Relevance

Objective

 Develop a flexible system model to simulate distributed power generation in power parks that use H₂ as an energy carrier

Power parks combine power generation co-located with a business, an industrial energy user, or a domestic village

- H2 generators -- reformers, electrolyzers
- H2 storage -- high-pressure vessels, hydrides,
- Electricity generation -- fuel cells, H2-engine, micro-turbine
- Renewable sources -- Photovoltaic, wind turbine, biomass gasification
- Vehicle refueling

Deliverable

 Tool to construct simulations of H₂ systems, including power parks, to analyze performance (thermodynamic efficiency and cost)

Method of Approach, Milestones

Software Design

Use Simulink software as platform for transient simulations

- Simulink provides:
 - Graphical workspace for block diagram construction
 - ODE solvers for integration of system in time (not quasi-steady approximation)
 - Quick-look output from simulation
 - Control strategies and iterative loop solutions

Create a library of Simulink modules to represent components

- Component models based on fundamental physics to the extent practical
- Example:
 - Coupled Chemkin software routines as Simulink functions
 - Thermodynamic properties of gas mixtures used in energy balances
 - Equilibrium composition used for catalytic reforming and combustion burners
- Library components can be quickly re-configured for new system concepts
- Generic components from library can be customized using data on the performance of specific unit

Method of Approach, Milestones

Project Plan for FY03:

				FY2003				FY2004			
Item	Task	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4		
1.	Develop additional modules for power park components.	*	*	*	*	*	•				
2.	Configure systems to model existing power park sites			*	*	*	*	*			
3.	Evaluate system performance of the power park.			*	*	*	*	*	*		
4.	Implement a control algorithm to optimize power park.					*	*	*	*		

- * Continuous development
- Milestone for completion

Simulink library modules, *Progress*

Library of Simulink modules includes:

- Reformers: steam methane and autothermal (partial oxidation)
- Fuel cell system
- Compressor (mechanical)
- High-pressure storage vessel
- Electrolyzer
- Photovoltaic Solar Collector

Module descriptions:

- Steam-methane reformer (SMR)
 - Reformer T determined by balance of heat transfer from combustion of reformate stream after H₂ separation
 - SMR module uses several sub-modules that call Chemkin
- Fuel cell system
 - Module uses H₂ flow rate and requested electric power
 - Sub-module uses data table for efficiency-power relation

Simulink library modules, *Progress*

Module descriptions (con't):

- Compressor
 - Raises pressure of H₂ to fill storage vessel
 - Computes power required for ideal multi-stage compression
- High-pressure storage vessel
 - Accepts H₂ flow rate and integrates H₂ stored
 - Computes pressure using Sandia's real-gas equation-of-state for H₂
- Photovoltaic Solar Collector
 - Model for average solar radiation
 - Flux is analytic function of longitude, latitude, altitude, and time
 - PV module uses a solar-electric conversion efficiency
 - Function of panel area and slope or tracking capability
 - Can be adjusted to match a specific collector design
- Electrolyzer
 - Convert electric power into flow of H₂ using efficiency
 - Initial model specifies efficiency consistent with SunLine data

Simulation of power systems, *Progress*

PV system simulates H₂ production at SunLine Transit

- Solar radiation modeled over calendar year
- PV arrays produce power to run electrolyzers
- H2 stored for vehicle refueling

Power system modeled after City of Las Vegas refueling facility

- SMR operates at steady state sized to supply fuel cell and vehicles
- Fuel cell stack uses H₂ to generate power to utility grid
- H₂ is compressed and stored in high-pressure vessel for vehicles
- Vehicle usage model depletes storage tanks

Transient simulation evaluates:

- Local efficiencies of individual components
- System thermal efficiency includes
 - H2 generated (and stored for use by vehicles or fuel cell)
 - Electric power from fuel cell (or other power conversion devices)
 - Compressor power required to store H₂

Simulink provides:

- Solution variables displayed numerically & graphically
- Numerical output stored in Matlab vectors for post-processing

Proposed Future Work and Milestones

Task 1

Continue to add and refine components to Simulink library

Battery, H2 storage as liquid or metal hydride, wind turbines

Task 2

Collaborate with researchers at existing power parks

SunLine Transit, City of Las Vegas, and other DOE sites

Task 3

Perform long-term studies of distributed H₂ production

- Include economics of generating H₂ and power
- Expand existing analysis to examine thermodynamic availability

Task 4

Implement a control system to optimize performance

Direct power flow and size components to minimize H₂ cost

Cooperative Efforts

Collaborations:

- U C Berkeley Energy and Resources Group (ERG) Tim Lipman, Carl Mas
 - economic analysis of H₂ systems
- SunLine Transit Agency Using data for PV energy and electrolyzer performance
- City of Las Vegas Refueling Station Will use data from reformer and fuel cell
- University of Alaska, Fairbanks -- Dennis Witmer (Remote Area Power Program)

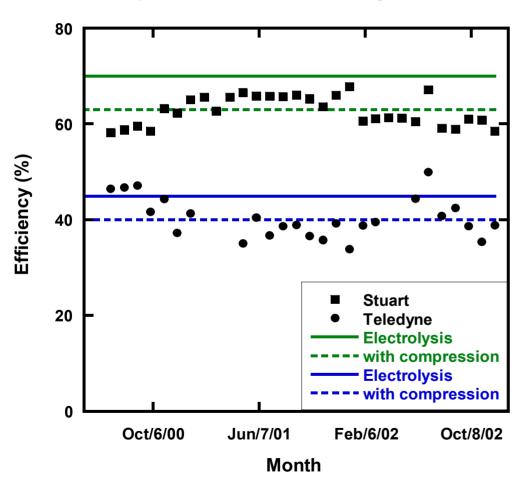
Publications:

- Lutz, A E, Bradshaw, R W, Keller, J O, and Witmer, D E, "Thermodynamic Analysis
 of Hydrogen Production by Steam Reforming," Int J of Hyd Engy, 28 (2003) 159-167.
- Lutz, A E, Bradshaw, R W, Bromberg, L and Rabinovich, A, "Thermodynamic Analysis of Hydrogen Production by Partial Oxidation Reforming," submitted to Int J of Hyd Engy, 2003.
- Lutz, A E, Larson, R S, and Keller, J O, "Thermodynamic Comparison of Fuel Cells to the Carnot Cycle," Int J of Hyd Engy, 27 (2002) 1103-1111.

Response to FY 2002 review

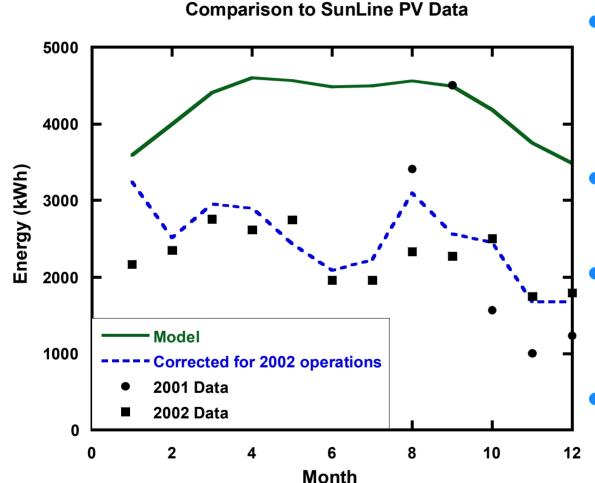
- FY2002 Ranking
 - Project ranked tied for 5th place in category with score 91/100 (Storage, Utilization, Safety, Analysis and Technology Transfer)
- Reviewer's suggestion:

"We encourage further collaborations and modeling of actual power park sites such as Las Vegas, SunLine, etc."


- Collaborations with power park sites:
 - 1. Established collaboration with SunLine transit
 - Using performance data on electrolyzers and PV collectors
 - Model comparison appears on following slides
 - 2. Continuing to participate on teleconferences with City of Las Vegas, Air Products, Plug Power, and DOE to follow progress
 - Attended opening of facility in November
 - Will use reformer and fuel cell performance data when it becomes available

Electrolyzer Simulation

Model comparison


- Electrolyzer + compressor to compare with SunLine data
- Estimate efficiency of electrolysis step to match average H₂ delivery efficiency

SunLine electrolyzers:

- Stuart Energy (Phase 3 unit)
 - Low-p cell output (1 psig)
 - Compression: 4-stages at 50% efficiency to 5000 psi
- Teledyne Energy Systems
 - High-p cell output (100 psig)
 - Higher purity H₂ supply
 - Compression: 2 stages at 20% efficiency to 3600 psi

Photovoltaic collector simulation

Model simulation

- Run yearly variation
- Integrate daily collection
- Sum monthly to compare to SunLine data

Solar radiation model

 Analytic function of longitude, latitude, altitude

PV panel model

- Area = 360 m², slope 23°
- Adjust solar-electric conversion efficiency = 7 %
- Correct monthly sums to SunLine's operations
 - Operating days / month
 - Sunny days / month

Vehicle H₂ consumption survey

Vehicle	Storage	Internal	H_2	Mileage	Range
	Mode	Volume (l)	(kg)	(mpgge)	(miles)
Ford Model U	10,000 psi	180	7	45	300
Ford P2000 – ICE	3600 psi	87	1.5	31.4/46.7	70
BMW 750hL – ICE	Liquid	140	9.9	22	218
Ford Focus FCV	5000 psi	186	4.3	47	200
Toyota FCHV	3600 psi	136	3.2	57	182
Honda FCX	5000 psi	157	3.8	45/58	170/220
Chrysler Natrium	NaBH ₄	200	10	30	300
GM HydroGen3	Liquid	68	4.5	55	250
GM HydroGen3	10,000 psi	86	3.1	55	170
GM Hy-wire	5000 psi	88	2	40	80

- Data collected from journals, press releases, and private communication
- Bold font indicates data that is specified, other values are computed
- Gaseous storage values computed using Sandia's real-gas equation-of-state
- External volume of container depends on storage mode and design

